was treated with 2.07 g (15.2 mmol) of fused ZnCl₂ in 20 mL (0.20 mol) of anhydrous benzeldehyde at room temperature for 36 h. After the usual workup procedure, the crude product was benzoylated in pyridine at room temperature. The residuum obtained after the workup was chromatographed, eluting with ethyl acetate-hexane (3:1); decolorization with charcoal (Norit A) was followed by crystallization from hot methanol to give white crystals: mp 189-90 °C (mp 7a, 196-197 °C; lit.33 mp 202-203 °C); ¹³C NMR (CD₃COCD₃) of 7a δ 166.26 (benzoyl C=O), 101.08 (benzylidene acetal), 98.74 (C1), 75.19 (C4), 69.84, 69.72, 69.55 (C3, C6, C2), 63.33 (C5), 55.66 (OCH₃); ¹H NMR (C₆D₆) δ 6.25 (c3, c6, c2), 63.53 (c5), 53.66 (OCH₃); ⁴H MMR (C₆D₆) δ 6.25 (dd, 1 H, H3, $J_{3,4} = 3.0, J_{3,2} = 10.5$), 6.15 (dd, 1 H, H2, $J_{2,3} = 10.5$, $J_{2,1} = 3.0$), 5.33 (d, 1 H, H1, $J_{1,2} \sim 3$) 5.27 (s, 1 H, benzylidene H), 4.29 (d, 1 H, H4, $H_{4,5} \sim 0, J_{4,3} \sim 3$), 4.02 (d, 1 H, H6_{eq}, $J_{gem} = 12.5$), 3.39 (d, 1 H, H6_{ex}, $J_{gem} = 12.4$), 3.15 (s, 1 H, H5, $J_{5,4} \sim 0$), 2.99 (s, 3 H, OCH₃); ¹H NMR of **7b,c** (C₆D₆) δ 4.02 (s, 0.66 H, M(2, 0) = 12.5, M(2,H6(S), 3.41 (s, 0.34 H, H6(R)).

Methyl 2,3,4-Tri-O-benzoyl-a-D-galactopyranosidurononitrile (8). To a stirred solution of 6a (0.480 g, 2.28 mmol) in 10 mL of pyridine over 5-Å molecular sieve was added 0.240

(33) Szeja, W. Synthesis 1979, 10, 821-22.

g of hydroxylamine hydrochloride (1.5 equiv). The reaction, monitored by TLC (CHCl₃-CH₃OH, 3:1), was heated to 65 °C for 24 h. Then 6 mL of pyridine and 1.6 mL of benzoyl chloride (2 equiv) were added, and the reaction mixture was stirred at room temperature for 20 h. The reaction was guenched with water. worked up conventionally, and chromatographed, eluting with ethyl acetate-hexane (1:1). This was followed by preparative TLC (benzene) and crystallization from ether to give white needles: mp 157-158 °C; ¹³C NMR (CD₃COCD₃) δ 166.00, 165.79, 165.54 (carbonyls on the benzoates), 115.83 (C6), 99.16 (C1), 70.14 (C4), 69.01 (C2), 67.86 (C3), 61.17 (C5), 56.88 (OCH₃); ¹H NMR (C- D_3OCD_3) δ 6.23 (m, 1 H, H4, $J_{4,5} \sim 1.0$), 6.02 (dd, 1 H, H3, $J_{3,2}$ = 10.7, $J_{3,4}$ = 3.4), 5.76 (dd, 1 H, H2, $J_{2,1}$ = 3.4, $J_{2,3}$ = 10.7), 5.66 (b s, 1 H, H5), 5.52 (d, 1 H, H1, $J_{1,2}$ = 3.5), 3.63 (s, 3 H, OCH₃). Anal. Calcd for C₂₈H₂₃NO₈: C, 67.06; H, 4.62; O, 25.52. Found: C, 66.84; H, 4.64; O, 25.76.

Acknowledgment. Partial support for this work from NIH Grant DE05102 and from the Graduate School of the University of Louisville is gratefully acknowledged. The authors thank John A. Daeuble for some fine experimental help.

Highly Selective Metal-Graphite-Induced Reductions of Deoxy Halo Sugars

Alois Fürstner* and Hans Weidmann

Institute of Organic Chemistry, Technical University, A-8010 Graz, Austria

Received August 24, 1988

To explore the applicability of highly active metal-graphite reducing agents to polyfunctional compounds a variety of suitably protected chloro-, bromodeoxy-, and deoxyiodohexopyranosides and hexofuranoses were each treated with potassium-graphite laminate (C₈K) and zinc/silver-graphite, respectively, invariably leading to the efficient formation of olefinic products. However, while C₈K in all cases causes dehydrohalogenation, zinc/ silver-graphite reductions proceed by dealkoxyhalogenation, results quite opposite to the formation of glycals by each of the reagents. In contrast, magnesium on graphite readily dimerizes methyl 6-deoxy-6-iodo- α -Dglucopyranoside (1a) by a Wurtz reaction.

Introduction

In recent years numerous kinds of metal-graphite combinations¹ containing metals such as zinc,² zinc/silver,^{3,4} magnesium,⁵ titanium,^{5,6} tin,⁷ iron,⁸ nickel,⁹ palladium,¹⁰ and platinum,¹¹ generally prepared by the reduction of metal salts by C_8K ,^{1,12} proved to be highly effective oneor two-electron donors widely applicable in various kinds

- Ronchi, A. J. Org. Chem. 1983, 48, 4108.
 (3) (a) Csuk, R.; Fürstner, A.; Weidmann, H. J. Chem. Soc., Chem.
 Commun. 1986, 775. (b) Csuk, R.; Fürstner, A.; Sterk, H.; Weidmann, H. J. Carbohydr. Chem. 1986, 5, 459. (c) Fürstner, A. J. Organomet. Chem. 1987, 336, C33.
- (4) (a) Csuk, R.; Fürstner, A.; Glänzer, B. I.; Weidmann, H. J. Chem. Soc., Chem. Commun. 1986, 1149. (b) Csuk, R.; Glänzer, B. I.; Fürstner, A.; Weidmann, H.; Formacek, V. Carbohydr. Res. 1986, 157, 235.
- (5) (a) Csuk, R.; Fürstner, A.; Weidmann, H. J. Chem. Soc., Chem.
 Commun. 1986, 1802. (b) Fürstner, A.; Csuk, R.; Rohrer, C.; Weidmann,
- H. J. Chem. Soc., Perkin Trans. 1 1988, 1729.
 (6) Fürstner, A.; Weidmann, H. Synthesis 1987, 1071.
 (7) Boldrini, G. P.; Savoia, D.; Tagliavini, E.; Trombini, C.; Umani-Ronchi, A. J. Organomet. Chem. 1985, 280, 307.
 (8) Savoia, D.; Tagliavini, E.; Trombini, C.; Umani-Ronchi, A. J. Org.
- Chem. 1982, 47, 876. (9) Savoia, D.; Tagliavini, E.; Trombini, C.; Umani-Ronchi, A. J. Org.
- Chem. 1981, 46, 5340 and 5344. (10) Savoia, D.; Trombini, C.; Umani-Ronchi, A.; Verardo, G. J. Chem.
- Soc., Chem. Commun. 1981, 540 and 541.
 (11) Fürstner, A.; Weidmann, H.; Hofer, F. J. Catal., submitted.
 (12) Bergbreiter, D. E.; Killough, J. M. J. Am. Chem. Soc. 1978, 100, 2126

^a (a) CH₃SO₂Cl, pyridine, CH₂Cl₂, 89%; (b) TBAX, acetonitrile, reflux, 78-84%; (c) zinc/silver-graphite, THF; (d) C₈K, THF; (e) magnesium-graphite, THF.

of reduction. Among these the highly efficient formation of furanoid and pyranoid glycals by C₈K¹³ or zinc/silvergraphite⁴ reduction of O-alkyl-, O-alkylidene-, or O-acylglycosyl halides are particularly noteworthy. The new glycal syntheses^{4,13} favorably complement each other. They not only allow aprotic Fischer-Zach type reductions

⁽¹⁾ For review, see: (a) Csuk, R.; Glänzer, B. I.; Fürstner, A. Adv. Organomet. Chem. 1988, 28, 85. (b) Savoia, D.; Trombini, C.; Umani-Ronchi, A. Pure Appl. Chem. 1985, 57, 1887. (2) Boldrini, G. P.; Savoia, D.; Tagliavini, E.; Trombini, C.; Umani-

⁽¹³⁾ Fürstner, A.; Weidmann, H. J. Carbohydr. Chem. 1988, 7, 773.

 a (a) NaBH₃CN, HCl, ether, 78% (ref 31); (b) (F₃CSO₂)₂O; pyridine, CH₂Cl₂; (c) TBAI, acetonitrile, 80–88%; (d) tetra-*n*-butyl-ammonium nitrite, acetonitrile, 60% (ref 32); (e) NBS, BaCO₃, CCl₄, 81% (ref 26).

 $^{a}\left(a\right)$ C₈K, THF; (b) zinc/silver-graphite, THF.

of extended scope, but also disprove the alledgedly restricted applicability of C_8K because of its lack of selectivity.¹²

In view of these encouraging results from reductions of notoriously vulnerable glycosyl halides and the increasing interest in carbohydrate-derived olefinic synthons,¹⁴ a more comprehensive study of deoxy halo sugar reductions by reactive metal–graphite reagents appeared to be indicated.

Results and Discussion

When compounds 1a, 1b, and 1c were treated with $zinc/silver-graphite^{3,4}$ in THF, product 2 was invariably obtained (Scheme I). Because of the very high activity of the reagent, which allows adoption of mild reaction conditions, side reactions in zinc-induced reductions of deoxy halo sugars previously observed^{15,16} were totally

 $^{a}\left(a\right)$ LiI-2H2O, ether, 20 °C, 45 min, 89% (ref 17); (b) zinc/silver-graphite, THF.

^a (a) C₈K, THF.

 $^{\rm a}$ (a) (F₃CSO₂)₂O, pyridine, CH₂Cl₂, (ref 19a); (b) tetra-*n*-butyl-ammonium iodide (TBAI), acetonitrile, reflux, 20 h; 79%; (c) zinc/silver-graphite, THF; (d) NaBH₄, ethanol, 2 H; (e) C₈K, THF.

suppressed, and a single, stable product was formed in high yield in each case. The same kind of dealkoxyhalogenation was found in the reduction of 6 and 8, respectively (Scheme III). Both yielded a similar distribution of products consisting of 11 and a preparatively inseparable mixture of nearly equal amounts of the Z and E stereoisomers of the ring-opened product 10, clearly shown by ¹³C and ¹H NMR spectroscopy (cf. Experimental Section). No conclusive explanation can presently be offered for the complete lack of regio- and stereoselectivity. As a last example in this series of pyranosidic educts, compound 19 on treatment with zinc/silver-graphite resulted in greatly improved formation of the glycal 20^{17} (Scheme IV).

In view of the discrepancy of these results and the complete resistance of a derivative of 2-O-benzyl- α -D-glucopyranosyl bromide to zinc/silver-graphite contrary to what was observed with C₈K,¹³ a comparative study employing this reagent seemed to be indicated. While zinc/silver-graphite, with the exception of 2-O-alkyl-glycosyl halides, gives rise to dealkoxyhalogenations, C₈K shows a totally opposite behavior. Thus, compounds 1a, 1b, 6, and 8 as well as 9 are invariably subject to dehydrohalogenation by C₈K in THF with exclusive formation of the corresponding enol ethers 3, 12, and 13 (Scheme V).

Although these results may be rationalized by the proposed polymeric Lewis base character of C_8K ,¹² they are absolutely unexpected considering the facile C_8K -induced dealkoxyhalogenations of glycosyl halides¹³ as well as the

⁽¹⁴⁾ For use of structurally related olefinic synthons, see, i.e.: (a) Ferrier, R. J.; Prasit, P. J. Chem. Soc., Chem. Commun. 1981, 983. (b) Ferrier, R. J.; Furneaux, R. H.; Prasit, P.; Tyler, P. C.; Brown, K. L.; Gainsford, G. J.; Diehl, J. W. J. Chem. Soc., Perkin Trans. 1 1983, 1621. (c) Ferrier, R. J.; Prasit, P.; Gainsford, G. J. J. Chem. Soc., Perkin Trans. 1 1983, 1629. (d) Ferrier, R. J.; Prasit, P.; J. Chem. Soc., Perkin Trans. 1 1983, 1645. (e) Ferrier, R. J.; Prasit, P.; J. Chem. Soc., Perkin Trans. 1 1983, 1645. (e) Ferrier, R. J.; J. Chem. Soc., Perkin Trans. 1 1983, 1645. (e) Ferrier, R. J.; J. Chem. Soc., Perkin Trans. 1 1983, 1645. (e) Ferrier, R. J.; Chem. Soc., Perkin Trans. 1 1983, 101. (g) Nakane, M.; Hutchinson, R.; Gollman, H. Tetrahedron Lett. 1980, 1213. (h) Florent, J. C.; Ughetto-Monfrin, J.; Monneret, C.; J. Org. Chem. 1983, 48, 4430. (j) Beau, J. M.; Aburaki, S.; Pougny, J. R.; Sinay, P. J. Am. Chem. Soc. 1983, 105, 621. (k) Villalobos, A.; Danishefsky, S. J. J. Org. Chem. 1983, 54, 15. (l) Bernotas, R. C.; Ganem, B. Tetrahedron Lett. 1985, 1123.

⁽¹⁵⁾ Bernet, B.; Vasella, A. Helv. Chim. Acta 1979, 62, 1990.

^{(16) (}a) Aspinall, G. O.; Chatterjee, D.; Khondo, L. Can. J. Chem. 1984,
62, 2728. (b) Aspinall, G. O.; Puvanesaràjah, V. Can. J. Chem. 1984, 62,
2736.

⁽¹⁷⁾ Lemieux, R. U.; Fraga, E.; Watanabe, K. A. Can. J. Chem. 1968, 46, 61.

Table I. Reduction of Deoxy Halo Sugars						
entry	educt	reagent	reaction conditions	product (% yield) ^a	R_{f}^{b}	eluant ^c toluene/EtOAc
1	la	Zn/Ag-graphite	20 °C; 10 min	2 (93)	0.52	10/1
2	1b	Zn/Ag-graphite	20 °C; 45 min	2 (90)		
3	1c	Zn/Ag-graphite	20 °C; 60 min	2 (88)		
4	1 a	C ₈ K	0 °C; 10 min	3 (94)	0.30 ^d	10/1
5	1b	C ₈ K	0 °C; 10 min	3 (96)		,
6	1 a	Mg-graphite	70 °C; 3 h	4 (68) ^e	0.25	3/1
7	6	Zn/Ag-graphite	20 °C; 10 min	10 (65) ^{<i>t</i>} ; 11 (30)	0.70 (10)	$15/1 \text{ and } 1/1^{g}$
8	8	Zn/Ag-graphite	20 °C; 10 min	10 (70) ^{<i>t</i>} ; 11 (21)	0:60 (11)	15/1 and 1/1 ^g
9	6	C ₈ K	0 °C; 15 min	12 (79)	0.53	10/1
10	8	C ₈ K	0 °C; 15 min	12 (86)		,
11	9	C ₈ K	-10 °C; 15 min	13 (67)	0.59	10/1
12	14	Zn/Ag-graphite	20 °C; 10 min	15 $(83)^h$	0.62^{i}	1/3
13	14	C _s K	0 °C; 20 min	16 (83)	0.75	15/1
14	17	Zn/Ag-graphite	20 °C; 10 min	18 (96)	0.53^{j}	1/3
15	19	Zn/Ag-graphite ^k	20 °C; 40 min	20 (90)	0.75	15/1
16	14	Rieke Zn	20 °C; 10 min	$15 (9)^{i}$,
17	14	Rieke Zn	70 °C; 45 min	15 (78)		
18	14	Zn powder ^m	20 °C; 60 min	15 $(0)^{l}$		

^a Isolated yield. ^b Using toluene/EtOAc, 1/1, as solvent unless stated otherwise. ^c For column chromatography. ^d Toluene/EtOAc, 3/1. ^e Beside traces of methyl 6-deoxy-2,3,4-tri-O-methyl- α -D-glucopyranoside and 2. ^fZ:E = 1.1:1. ^g Solvent change after having eluted compound 10. ^hAfter reduction of the resulting aldehyde by NaBH₄ in ethanol. ⁱ Toluene/EtOAc = 0/1. ^j Toluene/EtOAc/glacial acetic acid = 10/10/1. *4-fold excess of Zn/Ag-graphite. 'Starting material recovered. "With ultrasonic irradiation.

^a(a) CH₃SO₂Cl, pyridine, CH₂Cl₂, 3 h, 90%; (b) tetra-n-butylammonium iodide (TBAI), acetonitrile, reflux, 24 h, 76%; (c) zinc/silver-graphite, THF; (d) acetic acid, H_2O .

reduction of 2-(chloromethyl)oxolane with exclusive formation of the ring-opened product.¹²

Regarding these inconsistent results, the single electron transfer mechanism recently proposed for the zinc-induced formation of analogues of 2^{18} must be met with caution and provides no explanation for dealkoxyhalogenations by C_8K .¹³ In order to obtain more information about the different and complementary behavior observed with zinc/silver-graphite and C₈K, respectively, the furanose 14 was treated with both reagents as described above (see Scheme VI). While C₈K again exhibited its distinct Lewis base character in accordance with various other bases by exclusively affording 16,¹⁹ the reduction with zinc/silvergraphite led to regioselective formation of the thermally unstable 3,4-dideoxy-5,6-O-isopropylidene-D-erythro-hex-3-enose. In situ $NaBH_4$ reduction of the latter led to the corresponding enitol 15 in very good yield in form of its E diastereoisomer only, as shown by the coupling constant ${}^{3}J_{3,4}$ of 11.2 Hz. Although the high degree of regio- and stereoselectivity of the latter reaction as compared with that of compounds 6 and 8 is notable, the regioselective dehydrohalogenation of 14 by C_8K with formation of 16 follows from the relative positions of the leaving group in the educt.¹⁹ As can be anticipated from the foregoing zinc/silver-graphite induced reactions, the enoic acid 18²⁰ was efficiently formed by this reagent from the iodo lactone 17 (Scheme VII).

The extraordinary high reactivity of zinc/silver-graphite as compared to other activated samples of zinc could be

Table II.	Preparation	of Deoxy	Halo	Sugars
-----------	-------------	----------	------	--------

leaving group	solvent	temperature, °C; time, h	product	% yield
CH ₃ SO ₂ O	acetonitrile	80; 21	1aª	84
CH ₃ SO ₂ O	acetonitrile	80; 38	1 b	82
CH_3SO_2O	DMF	150; 48	$1c^{b}$	78°
CF ₃ SO ₂ O	acetonitrile	20; 14	6	88
CF ₃ SO ₂ O	acetonitrile	80; 8	8	80
$CF_{3}SO_{2}O$	acetonitrile	80; 24	14 ^d	79
$CH_{3}SO_{2}O$	acetonitrile	80; 28	17°	76

^aReference 23. ^bReference 28. ^cWith tetraethyl- instead of tetra-n-butylammonium chloride. ^dReference 19a, 30. ^eReference 29.

demonstrated by employing 14 as a substrate. While zinc activated by ultrasound²¹ in THF completely failed, Rieke zinc²² reacted much slower and also gave lower yields of 15 (cf. Table I). In addition, when zinc dust in aqueous ethanol, stated to be very well suited for reductive elimination of 6-deoxy-6-iodohexopyranosides,14-16 was applied to the furanose 14, consecutive reactions, most likely acid-catalyzed allylic rearrangements followed by hemiacetal formation, were observed, demonstrating the limitation of the aforementioned conditions to pyranoid structures.

In view of the pronounced single electron transfer ability of magnesium on graphite,⁵ it was thought that use of this reagent to ω -deoxy halo sugars might provide information on the mechanism of these active metal-induced reactions. However, in the case of 1a, instead of the anticipated elimination, reductive coupling with predominant formation of the dimeric product 4 was observed, accompanied by a minor amount of methyl 6-deoxy-2,3,4-tri-Omethyl- α -D-glucopyranoside. While this is in agreement with and substantially improves the magnesium-induced Wurtz type coupling of this educt,^{23,24} it differs completely from the Rieke magnesium-induced dealkoxyhalogenation

⁽¹⁸⁾ Bernet, B.; Vasella, A. Helv. Chim. Acia 1984, 67, 1328.
(19) (a) Binkley, R. W.; Ambrose, M. G.; Hehemann, D. G. J. Org. Chem. 1980, 45, 4387. (b) Tewson, T. J.; Welch, M. J. J. Org. Chem. 1978, 43, 1090

⁽²⁰⁾ Häfele, B.; Schröter, D.; Jäger, V. Angew. Chem. 1986, 98, 89.

⁽²¹⁾ For review, see: Lindley, J.; Mason, T. J. Chem. Soc. Rev. 1987, 16, 275

^{(22) (}a) Rieke, R. D.; Hudnall, P. M.; Uhm, S. J. Chem. Soc., Chem. Commun. 1973, 269. (b) Rieke, R. D.; Li, P. T. J.; Burns, B. T.; Uhm,
 S. J. Org. Chem. 1981, 46, 4323.
 (23) Stout, E. I.; Doane, W. M.; Trinkus, V. C. Carbohydr. Res. 1976,

^{50. 282.}

⁽²⁴⁾ For similar Wurtz type couplings of deoxy halo sugars see: Ariatti, M.; Zemlicka, J. J. Org. Chem. 1981, 46, 5204.

Table III. Physical and Spectral Data of Deoxy Halo Sugars.

compd	mp, °C	$[\alpha]^{20}$ _D (c, solvent)	R_f^a	selected NMR spectral parameters
la	39-40	116 (2.5, CHCl ₃)	0.59	4.81 (H-1, $J(1,2) = 3.5$); 97.54 (C-1), 7.50 (C-6)
1 b	5 96 0	137 (1.8, CHCl ₃)	0.58	4.84 (H-1, $J(1,2) = 3.5$); 97.49 (C-1), 33.46 (C-6)
1 c	63-64 ^b	147 (1.8, CH ₂ Cl ₂)	0.54	4.84 (H-1, $J(1,2) = 3.6$); 97.81 (C-1), 44.79 (C-6)
5	syrup ^c	98 (2.8, CHCl ₃)	0.33	4.85 (H-1, $J(1,2) = 3.4$); 3.55 (H-4, $J(3,4) = 9.4$, $J(4,5) = 8.9$); 97.91 (C-1)
6	syrup	114 (2.5, CHCl ₃)	0.68	4.82 (H-1, $J(1,2) = 3.8$), 4.67 (H-4, $J(3,4) = 3.9$, $J(4,5) = 1.4$); 98.30 (C-1), 40.38 (C-4)
7	syrup ^c	77 (11, CH ₂ Cl ₂)	0.30	4.90 (H-1, $J(1,2) = 3.4$), 4.13 (H-4, $J(3,4) = 3.0$, $J(4,5) = 0.8$); 98.04 (C-1)
8	syrup	70 (2.0, CH_2Cl_2)	0.55	4.90 (H-1, $J(1,2) = 4.2$); 97.98 (C-1), 29.70 (C-4)
9	syrup ^d	60 (2.5, CHCl ₃)	0.54	4.94 (H-1, $J(1,2) = 3.6$); 97.61 (C-1), 32.00 (C-6)
14	38-41 ^e	-15 (3.0, CHCl ₃)	0.84	5.97 (H-1, $J(1,2) = 3.2$), 4.46 (H-3, $J(3,4) = 2.8$); 104.91 (C-1), 34.26 (C-3)
17	90–92 [/]	$-20 (1.7, CH_2Cl_2)$	0.78	5.00 (H-2, J(2,3) = 6.0); 173.11 (C-1), 5.73 (C-5)
19	105–106°.#	41 (1.5, CHCl ₃)	0.75	5.15 (H-1, $J(1,2) = 0.4$); 102.32 (C-1), 25.02 (C-2)

^a Using EtOAc/toluene, 1/1, as solvent system. ^bMp = 62–64 °C; $[\alpha]^{22}_{D} = 162.2^{\circ}$ (c 1, CHCl₃) (ref 28). ^cIR 3600–3050 cm⁻¹ (b s, OH). ^d Syrup; $[\alpha]^{23}_{D} = 72^{\circ}$ (c 1.4, CHCl₃) (ref 26). ^eMp = 38–41 °C; $[\alpha]^{21}_{D} = -15.1^{\circ}$ (c 3, CHCl₃) (ref 30). ^fMp = 92 °C; $[\alpha]_{D} = -31.8^{\circ}$ (c 1.33, acetone) (ref 29). ^gMp = 105-106 °C; $[\alpha]^{25}_{D} = 39^{\circ}$ (c 1.3, ethanol) (ref 17).

claimed to be comparable to that induced by zinc.²⁵

Conclusions

In summary various kinds of deoxy halo sugars react with zinc/silver-graphite as well as with C_aK to give olefinic products of distinctly different structure. The zinc/silver-graphite reagent invariably induces dealkoxyhalogenations except in 2-O-alkylglycosyl halides. By contrast C₈K induces dehydrohalogenations with the exception of 2-O-alkylglycosyl halides, which are dealkoxyhalogenated with formation of glycals.¹³

In view of its extraordinary high reactivity, which permits rapid reactions under mild conditions, as well as the simple workup by filtration of insolubles, which is mainly responsible for the high yields, and its universal applicability, zinc/silver-graphite appears to be superior to other zinc reagents.^{14-16,20} Inasmuch as the reaction of magnesium on graphite, recently shown to be an excellent oneelectron donor,⁵ differs basically from that of zinc, a radical anion mechanism previously proposed for zinc-induced dealkoxyhalogenations¹⁸ does not seem to be very likely.

Experimental Section

General. NMR spectra were recorded with a Bruker MSL 300 instrument at 300 MHz (¹H NMR) or 75 MHz (¹³C NMR), respectively, with CDCl₃ as solvent and tetramethylsilane as internal standard. Chemical shifts are given in ppm, coupling constants (J) in hertz. IR spectroscopy was performed with a Beckman IR 33 (film of the product on a NaCl plate). Optical rotations were measured with a Perkin-Elmer 141 polarimeter. Precoated silica gel sheets (Merck 5554) were used for TLC, and column chromatography was invariably performed on columns of a diameter of 1.5 cm containing 50 g of Merck silica gel (230-240 mesh) with mixtures of ethyl acetate (EtOAc)/toluene in various proportions (cf. Table I) as eluant, thus affording TLC- and NMR-pure products in all cases. All melting points (Tottoli) are uncorrected. Tetrahydrofuran (THF) was distilled over LiAlH₄ prior to use. In all experiments graphite samples supplied by Lonza AG, Basle, Switzerland (HSAG 9), were employed, but any other kind of graphite quality turned out to be equally suited.

Educts. With the exception of 926 and 1917 all deoxy halo sugars were synthesized by substitution reactions of the corresponding monosulfonyl derivatives employing tetra-n-butylammonium halide.²⁷ Experimental details and the results obtained are summarized in Table II; selected analytical data of unknown or insufficiently characterized products are contained in Table III.

Preparation of Potassium-Graphite Laminate (C₈K).¹ Graphite (1.5 g, 125 mmol), after being heated for 15 min at 150-160 °C with stirring under argon, and potassium (0.6 g, 15.5 mmol) were kept at 150 °C with stirring until the laminate had formed (10-15 min). The material is highly pyrophoric, necessitating cautious handling in thoroughly dried solvents. The C₂K, the bronze color of which is indicative for its reactivity, is then cooled and ready for use after being suspended in anhydrous THF (25 mL)

Preparation of Zinc/Silver-Graphite. A mixture of anhydrous zinc chloride (1.0 g, 7.35 mmol) and silver(I) acetate (0.1 g, 0.6 mmol) was added in one portion at room temperature to the stirred suspension of C₈K described above under argon. After a first vigorous reaction, the mixture was refluxed for 30 min to complete the reduction and immediately used in the reactions described below.

Preparation of Magnesium-Graphite. This compound was prepared by following the same procedure described for zinc/ silver-graphite by employing anhydrous magnesium chloride (0.8 g, 7.65 mmol).

Reductions of Deoxy Halo Sugars by CaK. General Procedure. A solution of the respective deoxy halo sugar (15 mmol) in THF (20 mL) was added dropwise to a stirred suspension of C₈K (15.5 mmol) in THF (25 mL) at 0 °C under argon, during which the mixture turned black. After filtration and rinsing of the insolubles with THF (50 mL), the filtrate was evaporated under reduced pressure, and the residue was subjected to column chromatography with mixtures of ethyl acetate (EtOAc)/toluene in the respective proportion shown in Table I as eluant.

Methyl 6-Deoxy-2,3,4-tri-O-methyl-α-D-xylo-hex-5-eno**pyranoside (3)**: oil; $[\alpha]^{20}_{D} = 79.2^{\circ}$ (c 1.2, CHCl₃); IR 1658 cm⁻¹ (s); ¹H NMR δ 4.84 (d, 1 H, H-1, J_{12} = 3.3), 4.76 (d, 1 H, H-6, J_{46} = 1.0), 4.70 (d, 1 H, H-6', J_{46'} = 1.2), 3.62, 3.57, 3.44 (s, 3 H, OMe), 3.42-3.54 (m, 2 H, H-3, H-4), 3.28 (dd, 1 H, H-2, $J_{23} = 9.0$); ¹³C NMR δ 153.83 (C-5), 98.61, 96.46 (C-1, C-6), 83.66; 81.80, 81.60 (C-2, C-3, C-4), 61.01, 60.19, 58.40, 55.58 (OMe).

Methyl 6-O-benzyl-4-deoxy-2,3-di-O-methyl-β-L-threo**hex-4-enopyranoside (12):** oil; $[\alpha]^{20}_{D} = 160^{\circ}$ (c 2.6, CH₂Cl₂); IR 1675 cm⁻¹ (s); ¹H NMR δ 7.16–7.34 (m, 5 H, Ph), 5.06 (d, 1 H, H-4, $J_{34} = 2.4$), 4.98 (d, 1 H, H-1, $J_{12} = 3.0$), 4.57 (s, 2 H, CH₂Ph), 3.97 (dd, 1 H, H-3, $J_{23} = 9.3$, $J_{34} = 2.4$), 3.95 (s, 2 H, H-6_a, H-6_b), 3.51 (dd, 1 H, H-2), 3.55, 3.54, 3.44 (s, 3 H, OMe); ¹³C NMR δ 149.02 (C-5), 138.50, 128.61, 127.91 (Ph), 99.27, 98.98 (C-1, C-4), 78.46, 74.74, 72.42 (C-2, C-3, CH₂Ph), 69.27 (C-6), 59.01, 56.89, 56.73 (OMe).

Methyl 4-O-benzoyl-6-deoxy-2,3-di-O-methyl-a-D-xylohex-5-enopyranoside (13): mp 69-70 °C; $[\alpha]^{20}_{D} = 76^{\circ}$ (c 1.5, CHCl₃); IR 1745 (s), 1650 cm⁻¹ (s); ¹H NMR δ 4.95 (d, 1 H, H-1, $J_{12} = 3$), 4.8 (b s, 1 H, H-6), 7.1–8.0 (m, 5 H, Ph), 3.6, 3.5, 3.45 (s, 3 H, OMe); ¹³C NMR δ 151.42 (C-5), 138.09, 133.64, 129.98, 128.68 (Ph), 98.64 (C-1), 96.52 (C-6), 81.49, 80.88 (C-2, C-3), 71.96

⁽²⁵⁾ See ref 15, footnote 5, p 1993.

^{(26) (}a) Sato, K. I.; Yoshimura, J. Carbohydr. Res. 1982, 103, 221. (b)

 ^{(2) (}a) Sato, R. I., Iosimmura, J. Carbonyar, Res. 1982, 103, 221. (b)
 Hanessian, S. Org. Synth. 1987, 65, 243.
 (27) For review, see: (a) Binkley, R. W.; Ambrose, M. G. J. Carbohydr.
 Chem. 1984, 3, 1. (b) Stang, P. J.; Hanak, M.; Subramanian, R. L.
 Synthesis 1982, 85.

⁽²⁸⁾ Klemer, A.; Mersmann, G. Carbohydr. Res. 1972, 22, 425.

⁽²⁹⁾ Papageorgiou, C.; Benezra, C. Tetrahedron Lett. 1984, 6041.
(30) Bell, R. H.; Horton, D.; Williams, D. M.; Winter-Mihaly, E. Carbohydr. Res. 1977, 58, 109.

⁽³¹⁾ Garegg, P. J.; Hultberg, H.; Wollin, S. Carbohydr. Res. 1982, 108, 97.

⁽³²⁾ Albert, R.; Dax, K.; Link, R. W.; Stütz, A. E. Carbohydr. Res. 1983, 118, C5.

(C-4), 60.98, 59.59, 55.76 (OMe).

3-Deoxy-1,2:5,6-di-*O***-isopropylidene**- α -D-*erythro*-hex-3enofuranose (16): mp 50–51 °C (lit.¹⁹ mp 50–52 °C); $[\alpha]^{20}_{D} =$ 23° (c 1.8, CHCl₃) [lit.¹⁹ $[\alpha]_{D} = 21°$ (c 1)]; IR 1662 cm⁻¹ (s); ¹H NMR δ 6.06 (d, 1 H, H-1, $J_{12} = 5.1$), 5.28 (dd, 1 H, H-2, $J_{23} = 1.4$), 5.23 (dd, 1 H, H-3, $J_{35} = 1.2$), 4.57 (ddd, 1 H, H-5, $J_{56_{a}} = J_{56_{b}} =$ 6.2), 4.13 and 3.95 (d AB system, 2 H, H-6_a, H-6_b, $J_{AB} = 6.7$), 1.45, 1.43, 1.37 (3 H, s, Me); ¹³C NMR δ 160.11 (C-4), 112.17, 110.22 (=C= isopropylidene), 108.64 (C-1), 98.99 (C-3), 83.39, 71.34 (C-2, C-5), 67.25 (C-6), 28.22, 27.92, 26.20, 25.51 (Me isopropylidene).

Reductions of Deoxy Halo Sugars by Zinc/Silver–Graphite. General Procedure. The reductions of the corresponding deoxy halo sugars (5.0 mmol) by zinc/silver–graphite (7.35 mmol) and workup of the reaction mixtures followed the same procedure as described for C_8K .

5,6-Dideoxy-2,3,4-tri-O-methyl-D-xylo-hex-5-enose (2): oil; $[\alpha]^{20}_{D} = 31.4^{\circ}$ (c 1.7, CHCl₃); IR 1730 cm⁻¹ (s); ¹H NMR δ 9.73 (s, 1 H, CHO), 5.83 (d X part of an ABX, 1 H, H-5, $J_{45} = 7.8, J_{56_{a}} = 10.5, J_{56_{b}} = 14.9$), 5.34 (AB part of the ABX, 2 H, H-6_a, H-6_b, $J_{AB} = 16.0$), 3.81 (dd, 1 H, H-3, $J_{23} = 4.4, J_{34} = 7.8$), 3.74 (d, 1 H, H-2), 3.54 (dd, 1 H, H-4), 3.49, 3.43, 3.24 (s, 3 H, OMe); ¹³C NMR δ 201.12 (CHO), 134.81 (C-5), 119.07 (C-6), 84.38, 84.29, 81.83 (C-2, C-3, C-4), 60.37, 59.10, 56.54 (OMe).

6-*O*-Benzyl-4,5-dideoxy-2,3-di-*O*-methyl-L-*threo*-hex-4enose (10): oil; $[\alpha]^{20}_{D} = 75.7^{\circ}$ (c 4, CHCl₃); IR 1735 cm⁻¹ (s); ¹H NMR δ 9.74 (d, CHO(*E*), $J_{CHO,2} = 1.4$), 9.71 (d, CHO(*Z*), $J_{CHO,2} = 1.2$), 7.25-7.38 (m, 5 H, Ph), 5.86-6.00 (m, 1 H, H-5), 5.75 (dd, H-4(*E*), $J_{45} = 15.8$, $J_{34} = 7.2$), 5.63 (dd, H-4(*Z*), $J_{45} = 9.8$, $J_{34} = 9.4$), 4.52 (s, 2 H, CH₂Ph), 4.35 (dd, H-3(*Z*), $J_{23} = 4.0$), 4.05-4.18 (m, 2 H, H-6_a, H-6_b), 4.01 (dd, H-3(*E*), $J_{23} = 3.7$), 3.61 (dd, H-2(*Z*), $J_{2,CHO} = 1.4$), 3.57 (dd, H-2(*Z*), $J_{2,CHO} = 1.2$), 3.56, 3.51, 3.27, 3.22 (OMe, (*Z*) and (*E*)), *Z:E* = 1.11; ¹³C NMR δ 202.91, 202.78 (CHO), 132.43, 132.39, 128.79, 128.65, 128.60, 128.13, 127.94, 127.88 (C-4, C-5, Ph), 88.07, 87.91 (C-2), 81.95, 77.12 (CH₂Ph), 72.89, 72.50 (C-3), 69.91, 66.09 (C-6), 59.71, 59.61, 57.20, 56.97 (OMe).

Methyl 6-O -benzyl-3,4-dideoxy-2-O -methyl-α-D-erythrohex-3-enopyranoside (11): oil; $[\alpha]_{D}^{20} = -4.7^{\circ}$ (c 3.0, CHCl₃); ¹H NMR δ 7.25-7.35 (m, 5 H, Ph), 5.82 and 5.76 (d AB system, 2 H, H-3, H-4, $J_{AB} = 10.8$, $J_{45} = 1.2$, $J_{23} = 0.8$), 5.03 (d, 1 H, H-1, $J_{12} = 4.1$), 4.63 and 4.58 (AB system, 2 H, CH₂Ph), 4.35 (ddd, 1 H, H-5, $J_{56_{k}} = 2.7$, $J_{56_{b}} = 3.9$), 3.98 (dd, 1 H, H-2), 3.52 (dd, 2 H, H-6_a, H-6_b), 3.52, 3.44 (s, 3 H, OMe); ¹³C NMR δ 138.27, 128.57, 127.85, 127.58, 124.70 (C-3, C-4, Ph), 97.02 (C-1), 73.64, 73.41, 72.31, (C-2, C-5, CH₂Ph), 68.29 (C-6), 56.84, 56.12 (OMe).

3,4-Dideoxy-5,6-*O***-isopropylidene**-D-*erythro*-hex-3-enitol (15): oil $[\alpha]^{20}_D = 31.3^{\circ}$ (c 7.5, CH₂Cl₂); IR 3700–3080 cm⁻¹ (b s); ¹H NMR δ 5.85 (dd, 1 H, H-4, $J_{34} = 11.2$, $J_{45} = 6.0$), 5.55 (dd, 1 H, H-3, $J_{23} = 8.1$), 4.47 (ddd, 1 H, H-2, $J_{12} = 7.1$, $J_{1a,2} = 5.8$), 4.26 and 4.13 (d AB system, 2 H, H-1, H-1_a, $J_{AB} = 13.2$), 4.07 and 4.03 (d AB system, 2 H, H-6_a, H-6_b, $J_{AB} = 6.3$, $J_{56_{b}} = J_{56_{b}} = 1.3$), 3.93 (ddd, 1 H, H-5), 3.02, 2.4 (b s, 1 H each, OH, disappears on addition of D₂O), 1.44, 1.36 (s, 3 H, Me isopropylidene); ¹³C NMR δ 132.62, 131.02 (C-3, C-4), 109.79 (=C= isopropylidene), 78.14, 68.31, 66.07, 58.57 (C-1, C-2, C-5, C-6), 26.53, 25.22 (Me isopropylidene).

4,5-Dideoxy-2,3-O-isopropylidene-D-*erythro*-**pent-4-enonic acid** (18): oil; $[\alpha]^{20}_{D} = -28^{\circ}$ (c 10, acetone); IR 3600–2880 (b s), 1715 cm⁻¹ (m); ¹H NMR δ 9.8 (b s, 1 H, COOH, disappears on addition of D₂O), 5.80 (X part of an ABX system, 1 H, H-4, J₃₄ = 6.8, J₄₅ = J_{45b} = 15), 5.42 and 5.38 (AB part of the ABX system, 2 H, H-5_a, H-5_b, J_{AB} = 16), 4.86 (dd, 1 H, H-3, J₂₃ = 6.7), 4.71 (d, 1 H, H-2), 1.63, 1.42 (s, 3 H, Me isopropylidene); ¹³C NMR δ 174.18 (COOH), 136.69 (C-4), 119.74 (C-5), 111.42 (=C= isopropylidene), 78.55, 77.28 (C-2, C-3), 28.21, 25.39 (Me isopropylidene).

1,5-Anhydro-4,6-O-benzylidene-1,2-dideoxy-D-*ribo*-hex-1enitol (20): mp 83-84 °C (lit.¹⁷ mp 83.5 °C); [α]²⁰_D = 219° (c 3.2, ethanol) [lit.¹⁷ [α]²⁵_D = 209.5° (c 2, ethanol)]; IR 3620-3200 (b s), 1635 cm⁻¹ (s); ¹H NMR δ 7.25-7.40 (m, 5 H, Ph), 6.37 (d, 1 H, H-1, $J_{12} = 6.0$), 5.6 (s, 1 H, H benzylidene), 4.9 (dd, 1 H, H-2, $J_{23} = 6$), 4.2 (m, 2 H, H-3, H-5), 4.43 and 3.90 (d AB system, 2 H, H-6_a, H-6_b, $J_{56_a} = 4.5$, $J_{56_b} = 9$, $J_{AB} = 11$), 3.73 (dd, 1 H, H-4, $J_{34} = 3$, $J_{45} = 9.5$), 2.9 (b s, 1 H, OH, disappears on addition of D₂O); ¹³C NMR δ 146.19 (C-1), 137.28, 129.42, 128.51, 126.42 (Ph), 101.85, 101.26 (C-2, C benzylidene), 78.25, 68.62, 64.01 (C-3, C-4, C-5), 60.11 (C-6).

Preparation of Bis(methyl 6-deoxy-2,3,4-tri-O-methyl- α -D-glucopyranosid-6-yl) (4). A solution of 1a (1.04 g, 3 mmol) in anhydrous THF (20 mL) was droped into a suspension of magnesium-graphite (7.65 mmol) in THF (25 mL) at ambient temperature under argon, and the mixture was refluxed for 3 h. After cooling, filtration, washing of insolubles with THF (50 mL), and evaporation, column chromatography with toluene/ethyl acetate (3/1) as eluant yields 4 (0.45 g, 68%) and 0.05 g (8%) of methyl 6-deoxy-2,3,4-tri-O-methyl- α -D-gluco-pyranoside and only traces of 2. 4: mp 86-87 °C; [α]²⁰_D = 158° (c 1.1, CHCl₃); ¹H NMR δ 4.77 (d, 1 H, H-1, J_{12} = 3.6), 3.61, 3.54, 3.51, 3.39 (s, 3 H, OMe), 3.88-3.58 (m, 2 H, H-4, H-5), 3.17 (dd, 1 H, H-2, J_{23} = 9.7), 2.84 (dd, 1 H, H-3, J_{34} = 9.7), 1.89 (m, 1 H, H-6_a), 1.64 (m, 1 H, H-6_b); ¹³C NMR δ 97.41 (C-1), 84.31, 83.79, 82.33 (C-2, C-3, C-4), 69.70 (C-5), 60.92, 60.73, 59.03, 55.18 (OMe), 27.52 (C-6).

Acknowledgment. Financial support by the Fonds zur Förderung der Wissenschaftlichen Forschung, Vienna (P6286C) is gratefully acknowledged. We also thank C. Illaszewicz, Dr. H. Hönig, and Dr. R. Pucher for recording the NMR spectra.

Synthesis and Reactivity of β -Lactones Derived from L-Threonine and Related Amino Acids

Sunil V. Pansare and John C. Vederas*

Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2

Received December 8, 1988

The synthesis and nucleophilic ring opening of optically pure N-protected α -amino- β -alkyl β -lactones was investigated. Treatment of N-BOC-L-threonine (8) and N-BOC-L-allo-threonine (9) under modified Mitsunobu conditions (Ph₃P, dimethyl azodicarboxylate, -78 °C) gives stereospecific (anti) decarboxylative elimination to afford N-BOC-aminopropenes 10 and 11, respectively, in contrast to cyclization of N-BOC-L-serine to its β -lactone under these conditions. However, the corresponding N-(phenylsulfonyl) derivatives 12, 13, and 16 cyclize to chiral β -lactones 14, 15, and 17, respectively, in 40-55% yield by using carboxyl group activation by 4-bromobenzenesulfonyl chloride in pyridine. Nitrogen (pyrazole, benzylamine), oxygen (hydroxide, acetate), and carbon (EtMgCl, CuBr-SMe₂) nucleophiles prefer to attack at the carbonyl carbon, in contrast to their reactions (except that of β -lactones with β -butyrolactone and serine β -lactones. However, β -lactones 14, 15, and 17 are opened at the β -carbon with inversion of configuration by some sulfur (thiourea) and halogen (magnesium chloride, bromide, iodide) nucleophiles to N-protected optically pure β -substituted amino acids in good yield.

The importance of α -amino acids has prompted the recent development of numerous methods for their ste-

reospecific synthesis.¹ In earlier work we have shown that N-protected derivatives 1 of serine can be cyclized under